MapReduce程序设计——WordCount Welcome To Ryan's Home

一、实验目的

熟悉HDFS的命令行操作和Java访问HDFS的方法

二、实验平台

  • 操作系统:Linux
  • Hadoop版本:2.7.1。
  • Maven

三、实验步骤

1. 下载Maven

2. 更改Maven本地源:新建Settings.xml文件,复制下面的内容

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
                      http://maven.apache.org/xsd/settings-1.0.0.xsd">
  <localRepository/>
  <interactiveMode/>
  <usePluginRegistry/>
  <offline/>
  <pluginGroups/>
  <servers/>
  <mirrors>
    <mirror>
    <id>aliyunmaven</id>
    <mirrorOf>central</mirrorOf>
    <name>aliyun maven</name>
    <url>https://maven.aliyun.com/repository/public </url>
    </mirror>
  </mirrors>
  <proxies/>
  <profiles/>
  <activeProfiles/>
</settings>

在Eclipse菜单栏依次选择Windows->Preferences->Maven->User Settings中,选择上一步中新建的Settings.xml文件 set setting.xml

3. 创建Maven Project

创建Maven Project选择 Maven-archetype-quickstart 选项 选择 Maven-archetype-quickstart 选项

4. 添加Maven依赖项。右键项目依次选择Maven—>Add Dependency,输入Hadoop-client依赖

在这里插入图片描述

5. 编写WordCount程序

  • 创建一个txt文件(单词之间用空格” “隔开)——WordCount所读取的文件

  • WordCountMapper


import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;


public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

        // 将文本内容先转换成String
        String line = value.toString();
        
        // 2根据空格将这一行切分成单词
        String[] words = line.split(" ");
        
        // 将单词输出为<单词,1>
        for(String word:words){
            // 将单词作为key,将次数1作为value,以便于后续的数据分发,可以根据单词分发,以便于相同单词会到相同的reducetask中
            context.write(new Text(word), new IntWritable(1));
        }
    }
}

  • WordCountReducer

import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class WordCountReduce extends Reducer<Text, IntWritable, Text, IntWritable> {

    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {

        int count = 0;

        // 汇总各个key的个数
        for(IntWritable value:values){
            count +=value.get();
        }
        
        // 输出特定key的总次数
        context.write(key, new IntWritable(count));
    }
}

  • WordCount

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;


public class WordCount {
    public static void main(String[] args) throws Exception {
        //获取配置信息,或者job对象实例
        Configuration configuration = new Configuration();
        //配置提交到yarn上运行,windows和Linux变量不一致
//        configuration.set("mapreduce.framework.name", "yarn");
//        configuration.set("yarn.resourcemanager.hostname", "node22");
        Job job = Job.getInstance(configuration);
        
        job.setJarByClass(WordCount.class);
        
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReduce.class);
        
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        
        // 指定job的输入原始文件所在目录
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        
        //  将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
//        job.submit();
        boolean result = job.waitForCompletion(true);
        System.exit(result?0:1);
    }
}

6. 提交到分布式 系统中与运行

  • 先启动Hadoop
cd /usr/local/hadoop
./sbin/start-dfs.sh
  • 再把新建的文件wordcount.txt上传到hdfs上:
./bin/hadoop fs -put -f ./wordcount.txt /input
  • 打包WordCount代码,生成一个jar包,名为WordCount,选定主类为WordCount,保存在/usr/local/hadoop中:
  • 运行jar文件:
hadoop jar /usr/local/hadoop/WordCount.jar /input /output
  • 查看与与运行结果:
hadoop fs -ls /output
  • 查看输出结果
 hadoop fs -cat /output/part-r-00000

输出结果



欢迎查看我的CSDN博客:Welcome To Ryan’s Home



Ryan.G.Kingwechat Ryan.G.Kingqq Ryan.G.Kingalipay